Добавить новость
123ru.net
News in English
Февраль
2026
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17
18
19
20
21
22
23
24
25
26
27
28

Pharma Rewires Drug Development With AI Operations

0

Drug development has grown too expensive and too slow to rely on manual workflows, as the cost of bringing a single therapy to market climbs into the billions and approval timelines stretch across a decade or more.

In response, pharmaceutical companies are reshaping their operating models around artificial intelligence (AI). By embedding machine learning into trial execution and compliance infrastructure, drugmakers are targeting the most costly and failure-prone bottlenecks in how therapies are tested, reviewed and ultimately brought to market.

As Reuters reported, large pharmaceutical companies are deploying AI tools to speed clinical trials and regulatory submissions by identifying eligible patients from fragmented health records, optimizing trial site selection, predicting dropout risks and even generating first drafts of regulatory filings for agencies such as the U.S. Food and Drug Administration (FDA).

The shift marks a structural inflection point in how medicines are developed. With drug development costs regularly exceeding $2 billion to $3 billion per therapy and timelines stretching more than a decade, inefficiencies in trials and regulatory workflows represent both financial and human-health risks. In this context, AI is transitioning from a discovery accelerator into operational infrastructure that enables faster, cheaper and more predictable outcomes.

A World Economic Forum article outlines how AI is reshaping drug discovery, clinical strategy and manufacturing optimization, aligning computational models with real-world patient data to guide decision-making at every stage.

Rewiring Trials: Recruitment, Safety and Documentation

Clinical trials remain one of the costliest and slowest phases of drug development. AI is being applied to long-standing pain points such as patient recruitment, retention and safety monitoring. Regulatory authorities increasingly receive structured and unstructured health data—such as electronic health records and imaging—that traditional methods struggle to harmonize. AI models can ingest these disparate data types to create more accurate eligibility profiles and predict dropout risk, addressing two of the strongest predictors of trial failure.

Machine learning algorithms can analyze imaging data and real-world evidence to surface safety signals earlier than conventional methods, enabling proactive risk mitigation strategies.

These predictive insights can inform both execution and regulatory strategy. According to Reuters, companies are exploring generative AI to draft clinical study reports and portions of regulatory submissions, a task that historically involved thousands of hours of manual compilation and editing. The aim is not to replace human experts, but to reduce repetitive labor and accelerate submission timelines without sacrificing rigor.

From Discovery Platforms to Execution Ecosystems

AI’s application in drug development didn’t start with trials; it began in discovery. Computational chemistry tools that once assisted chemists in modeling and simulation are increasingly autonomous. Chemical & Engineering News documented how AI is now “taking over every step of drug discovery,” from target selection to optimization, using pattern recognition to propose viable candidates far faster than traditional lab-based methods.

Big Tech and hardware players are entering these workflows, blurring the lines between IT and life sciences. For example, Nvidia and Eli Lilly announced a co-innovation lab to drive drug discovery.

Google’s research arm is also using Gemma AI models for cancer therapy discovery, demonstrating how large-language and generative models can analyze biological pathways and propose novel therapeutic hypotheses.

Taken together, these developments point to a broader reality: AI is no longer a niche computational aid in early R&D. It is becoming an end-to-end operational ecosystem that supports patient selection, safety monitoring, documentation generation, trial logistics and regulatory engagement.

The post Pharma Rewires Drug Development With AI Operations appeared first on PYMNTS.com.






Загрузка...


Губернаторы России

Спорт в России и мире

Загрузка...

Все новости спорта сегодня


Новости тенниса

Загрузка...


123ru.net – это самые свежие новости из регионов и со всего мира в прямом эфире 24 часа в сутки 7 дней в неделю на всех языках мира без цензуры и предвзятости редактора. Не новости делают нас, а мы – делаем новости. Наши новости опубликованы живыми людьми в формате онлайн. Вы всегда можете добавить свои новости сиюминутно – здесь и прочитать их тут же и – сейчас в России, в Украине и в мире по темам в режиме 24/7 ежесекундно. А теперь ещё - регионы, Крым, Москва и Россия.


Загрузка...

Загрузка...

Экология в России и мире




Путин в России и мире

Лукашенко в Беларуси и мире



123ru.netмеждународная интерактивная информационная сеть (ежеминутные новости с ежедневным интелектуальным архивом). Только у нас — все главные новости дня без политической цензуры. "123 Новости" — абсолютно все точки зрения, трезвая аналитика, цивилизованные споры и обсуждения без взаимных обвинений и оскорблений. Помните, что не у всех точка зрения совпадает с Вашей. Уважайте мнение других, даже если Вы отстаиваете свой взгляд и свою позицию. Smi24.net — облегчённая версия старейшего обозревателя новостей 123ru.net.

Мы не навязываем Вам своё видение, мы даём Вам объективный срез событий дня без цензуры и без купюр. Новости, какие они есть — онлайн (с поминутным архивом по всем городам и регионам России, Украины, Белоруссии и Абхазии).

123ru.net — живые новости в прямом эфире!

В любую минуту Вы можете добавить свою новость мгновенно — здесь.






Здоровье в России и мире


Частные объявления в Вашем городе, в Вашем регионе и в России






Загрузка...

Загрузка...





Друзья 123ru.net


Информационные партнёры 123ru.net



Спонсоры 123ru.net